Цилиндрические координаты - définition. Qu'est-ce que Цилиндрические координаты
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Цилиндрические координаты - définition

Проективные координаты; Однородные координаты

ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ      
точки М , три числа r, ?, z, связанные с декартовыми координатами x, y, z этой точки формулами:x = rcosz,y = rsinz,z = z.
Цилиндрические координаты      

точки М, три числа r, θ, z, характеризующие положение точки в пространстве (см. рис.). Наименование Ц. к. связано с тем, что координатная поверхность (см. Координаты) r = const является цилиндром, образующие которого параллельны Oz. Ц. к. и прямоугольные координаты х, у, z точки М связаны соотношениями: х = rcosθ, у = rsinθ, z = z.

К ст. Цилиндрические координаты.

Цилиндрические параболические координаты         
  • Координатные поверхности в координатах параболического цилиндра.
Цилиндрические параболические координаты (координаты параболического цилиндра) (u,\;v,\;z) — система координат, обобщающая параболические координаты на трёхмерный случай путём добавления третьей (декартовой) координаты \ z, то есть аппликаты.

Wikipédia

Однородная система координат

Однородные координаты ― система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.

Однородные координаты обладают тем свойством, что определяемый ими объект не меняется при умножении всех координат на одно и то же ненулевое число. Из-за этого количество координат, необходимое для представления точек, всегда на одну больше, чем размерность пространства, в котором эти координаты используются. Например, для представления точки на прямой в одномерном пространстве необходимы 2 координаты и 3 координаты для представления точки на плоскости в двумерном пространстве. В однородных координатах возможно представить даже точки, находящиеся в бесконечности.

Введены Плюккером в качестве аналитического подхода к принципу двойственности Жергонна — Понселе.

Qu'est-ce que ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ - définition